Top

Adding and Subtracting Rational Expressions Calculator
Top
A rational number is something which can be expressed in the form $\frac{p}{q}$ where p and q are integers and q is not equal to zero. A rational function is made of rational numbers.

Adding and Subtracting Rational Expressions Calculator is helpful in calculating two rational function. It is adding rational expressions calculator that add and subtract rational numbers so called add and subtract rational numbers calculator. It is even tool of adding rational expressions with different denominators calculator and subtracting rational expressions calculator. You just have to enter the expressions and operation and get the answer instantly.
Below is given a default two rational function with the appropriate operations to be taken like addition or subtraction. If u click "Calculate", it will find the common denominator and perform the appropriate operation and get the simplified answer.

 

Steps for Adding and Subtracting Rational Expressions Calculator

Back to Top
Step 1 :  

Factorize the denominator of the given expression.



Step 2 :  

Find the LCD of the denominator to get common denominator.



Step 3 :  

Multiply the numerator with expression which is not present in the denominator



Step 4 :  

Perform the operations either addition or subtraction in the numerator to get the answer.



Problems on Adding and Subtracting Rational Expressions Calculator

Back to Top
  1. $\frac{4x}{2(x+1)}$ + $\frac{3}{2(x + 3)}$


    Step 1 :  

    $\frac{4x}{2x + 2}$ + $\frac{3}{2x + 6}$



    Step 2 :  

    LCD = (2x + 2)(2x +6)



    Step 3 :  

    $\frac{4x}{2(x+1)}$ + $\frac{3}{2(x + 3)}$ = $\frac{4x (2x + 6)}{(2x + 2)(2x +6)}$ + $\frac{3(2x + 2)}{(2x + 2)(2x +6)}$


    = $\frac{8x^{2} + 24x}{(2x + 2)(2x +6)}$ + $\frac{6x + 6}{(2x + 2)(2x +6)}$



    Step 4 :  

    $\frac{4x}{2(x+1)}$ + $\frac{3}{2(x + 3)}$ = $\frac{8x^{2} + 24x + 6x + 6}{(2x + 2)(2x +6)}$



    Answer  :  

    $\frac{4x}{2(x+1)}$ + $\frac{3}{2(x + 3)}$ = $\frac{8x^{2} + 30 x + 6}{(2x + 2)(2x +6)}$$\frac{4x^{2} + 15 x + 3}{2(x + 2)(x + 3)}$ = $\frac{4x^{2} + 15 x + 3}{2(x + 2)(x + 3)}$



  2. $\frac{5x}{x - 3}$ - $\frac{y}{3y - 2}$


    Step 1 :  

    $\frac{5x}{x - 3}$ - $\frac{y}{3y - 2}$



    Step 2 :  

    LCD = (x - 3)(3y - 2)



    Step 3 :  

    $\frac{5x}{x - 3}$ - $\frac{y}{3y - 2}$ = $\frac{5x (3y - 2)}{(x - 3)(3y - 2)}$ - $\frac{y (x - 3)}{(x - 3)(3y - 2)}$

             = $\frac{15xy - 10x}{(x - 3)(3y - 2)}$ - $\frac{xy - 3y}{(x - 3)(3y - 2)}$



    Step 4 :  

    $\frac{4x}{2x+3}$ + $\frac{3}{6x + 5}$ = $\frac{15xy - 10x -xy + 3y}{(x - 3)(3y - 2)}$
                                                             



    Answer  :  

    $\frac{4x}{2x+3}$ + $\frac{3}{6x + 5}$ = $\frac{14xy - 10x +3y}{(x - 3)(3y - 2)}$



*AP and SAT are registered trademarks of the College Board.