To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free)
Top

Charles Law Calculator
Top
The Charles law is one of the gas law which states that:
At constant pressure , the volume of a given mass of a gas is directly proportional to its temperature on Kelvin scale or absolute scale . It may be mathematically written as :       
V  $\alpha$  T   ( at constant P and n )
Let Vi be the initial volume of a gas at initial temperature Ti , at a given pressure. Let there be change in temperature hence Volume changes. Hence Vf and Tf be the final Volume and final temperature of the gas.
From the above two equations , we get                   
$\frac{V_{1}}{T_{1}}$ = $\frac{V_{2}}{T_{2}}$   
Charles law Calculator Calculates the any of the these quantities V1, T1, V2, and Tif any of the three quantities are given.   
 

Steps for Charles Law Calculator

Back to Top
Step 1 :  

Analyze the problem and substitute the given quantities



Step 2 :  

Using the formula:


$\frac{V_{i}}{T_{i}}$ = $\frac{V_{f}}{T_{f}}$


Where Vi = Initial Volume


Vf = Final Volume


Ti = Initial temperature


Tf = Final temperature.


Substituting the given values in the above equation, we get the answer for desired quantity. 



Problems on Charles Law Calculator

Back to Top
  1. A gas is burnt in to the flame at contant pressure, It has initial temperature of 200 C and Volume of 4L. Calculate its Volume if temperature is 360 C?


    Step 1 :  

    Given: 


    Initial Volume, Vi = 4 L 


    Final Volume, Vf = ?


    Initial temperature, Ti =  200 C = 293 K


    Final temperature, Tf = 360 C = 309 K.



    Step 2 :  

    Using the formula:


    $\frac{V_{i}}{T_{i}}$ = $\frac{V_{f}}{T_{f}}$


    Vf = $\frac{V_{i} T_{f}}{T_{i}}$


    Vf = $\frac{4 L \times 309 K}{293 K}$



    Answer  :  

    Final Volume Vf = 4.21 L



  2. A sample of gas has initial temperature of 240 K and Initial volume of 128 mL. calculate its final temperature if final volume is 500 ml.


    Step 1 :  

    given: Initial volume Vi = 128 mL = 0.128 L


    Final volume Vf = 500 mL = 0.5 L


    Initial temperature Ti = 240 K


    Final temperature Tf = ? 



    Step 2 :  

    Using formula:


    $\frac{V_{i}}{T_{i}}$ = $\frac{V_{f}}{T_{f}}$


    Tf$\frac{V_{f} T_{i}}{V_{i}}$


    Tf = $\frac{0.5 L \times 240 K}{0.128 L}$



    Answer  :  

    Final temperature Tf = 937.5 K.



*AP and SAT are registered trademarks of the College Board.