Top

Covariance Calculator
Top
Covariance calculator is used to measure the two variables (i.e. X and Y) by changing together and calculate the sample mean, co variance between the two random variables.

The number of values (N) should be same for two variables (X and Y).
 

Step by Step Calculation

Back to Top
Step 1 :  

Below you could see the steps for solving problems


 


Step a: Find the mean for X and Y


Mean = $\frac{Sum\ of\ values\ entered}{N}$


 


Step b: Subtract all the values of X and Y with their respective mean


 


Step c: Multiply respected values of step b.


 


Step d: Add all the values of step c.


 


Step e: Apply covariance formula



Cov(X, Y) = $\frac{\sum (x_{i} - \bar{x}) (y_{i} - \bar{y})}{N}$



Where xi = Entered values of X


$\bar{X}$ = Mean Value for X


Xi = Values of X


Yi = Values of Y


$\bar{Y}$ = Mean value for Y


N = number of entered values



Step 2 :  

Put the values in the formula and solve it further.



Example Problems

Back to Top
  1. Find the covariance for the following data sets,

    X = 10, 20, 30, 60

    Y = 40, 50, 60, 80


    Step 1 :  

    Give: X = 10, 20, 30, 60


            Y = 40, 50, 60, 80


            N = 4


     


    Mean X      = $\frac{10+20+30+60}{4}$


               


                   = $\frac{120}{4}$


    $\bar{Y}$ = 30


     


    Mean Y = $\frac{40+50+60+80}{4}$


     


               = $\frac{230}{4}$




     $\bar{X}$ = 57.5


     


    Xi - $\bar{X}$ = 10 - 30 = -20


     


    Xi - $\bar{X}$ = 20 - 30 = -10


     


    Xi - $\bar{X}$ = 30 - 30 = 0


     


    Xi - $\bar{X}$ = 60 - 30 = 30


     


     


    Yi - $\bar{Y}$ = 40 - 57.5 = -17.5


     


    Yi - $\bar{Y}$ = 50 - 57.5 = 7.5


     


    Yi - $\bar{Y}$ = 60 - 57.5 = 2.5


     


    Yi - $\bar{Y}$ = 80 - 57.5 = 22.5



    Step 2 :  

    Apply covariance formula 



    Cov(X, Y) = $\frac{\sum (x_{i} - \bar{x}) (y_{i} - \bar{y})}{N}$




    = $\frac{(-20 * -17.5)+(-10 * -7.5)+(0 * 2.5)+(30 * 22.5)}{4}$


     


    = $\frac{350+75+0+675}{4}$


     


    = $\frac{1100}{4}$


     


    = 275


     


    Cov(X, Y) = 275



    Answer  :  

    Mean X = 30

     

     

     

     

     

     

     

    Mean Y = 57.5

     

     

     

     

     

     

     

    Number of values N = 4

     

     

     

     

     

     

     

    Cov(X, Y) = 275



  2. Find the covariance for the following data sets,

    X = 2, 4, 6, 8, 9

    Y = 1, 3, 5, 7, 8


    Step 1 :  

    Give: X = 2, 4, 6, 8, 9


            Y = 1, 3, 5, 7, 8


            N = 5


     


    Mean X    = $\frac{2+4+6+8+9}{5}$


               


                   = $\frac{29}{5}$




    $\bar{Y}$ = 5.8


     


    Mean Y = $\frac{1+3+5+7+8}{5}$


     


               = $\frac{23}{5}$




     $\bar{X}$ = 4.8


     


    Xi - $\bar{X}$ = 2 - 5.8 = -3.8


     


    Xi - $\bar{X}$ = 4 - 5.8 = -1.8


     


    Xi - $\bar{X}$ = 6 - 5.8 = 0.2


     


    Xi - $\bar{X}$ = 8 - 5.8 = 2.2


     


    Xi - $\bar{X}$ = 9 - 5.8 = 3.2


     


     


    Yi - $\bar{Y}$ = 1 - 4.8 = -3.8


     


    Yi - $\bar{Y}$ = 3 - 4.8 = - 1.8


     


    Yi - $\bar{Y}$ = 5 - 4.8 = 0.2


     


    Yi - $\bar{Y}$ = 7 - 4.8 = 2.2


     


    Yi - $\bar{Y}$ = 8 - 4.8 = 3.2


     



    Step 2 :  

    Apply covariance formula 



    Cov(X, Y) = $\frac{\sum (x_{i} - \bar{x}) (y_{i} - \bar{y})}{N}$


     


    $\frac{(-3.8 * -3.8)+(-1.8 * -1.8)+(0.2 * 0.2)+(2.2 * 2.2)+(3.2 * 3.2)}{5}$


     


    = $\frac{14.44+3.24+0.04+4.84+10.24}{5}$


     


    = $\frac{32.8}{5}$


     


    = 6.56


     


    Cov(X, Y) = 6.56




    Answer  :  


    Mean X = 5.8




     




    Mean Y = 4.8




     




    Number of values N = 5




     




    Cov(X, Y) = 6.56



*AP and SAT are registered trademarks of the College Board.