Top

Error Function Calculator
Top
Error function calculator is an online statistical tool to find out the relative precision of approximation. The mathematical expression of the same is mentioned below:
erf(x)=$\frac{2}{\sqrt{\pi }}$$\int_{0}^{x}$$e^{-t^{2}}$dt
Where, x is the given value.

Default sample size value is given in the calculator below. Substitute the default value in the error function equation and simplify it. You can see error function on clicking "Calculate Error Function".

## Steps for Error Function Calculator

Step 1 :

Write down the value of x which is given in the question.

Step 2 :

Substite this value in the given equation and simplify it.

erf(x)=$\frac{2}{\sqrt{\pi }}$$\int_{0}^{x}$$e^{-t^{2}}$dt

## Problems on Error Function Calculator

1. ### Calculate the error function if x is equal to 1.2.

Step 1 :

Given value x=1.2

Step 2 :

The error function equation is,

erf(x)=$\frac{2}{\sqrt{\pi }}$$\int_{0}^{x}$$e^{-t^{2}}$dt

erf(1.2)=$\frac{2}{\sqrt{\pi }}$$\int_{0}^{1.2}$$e^{-t^{2}}$dt=0.91031

erf(x)=0.91031

2. ### Determine the error function whose x is given as 0.9?

Step 1 :

Given value x=0.9

Step 2 :

The error function equation is,

erf(x)=$\frac{2}{\sqrt{\pi }}$$\int_{0}^{x}$$e^{-t^{2}}$dt

erf(0.9)=$\frac{2}{\sqrt{\pi }}$$\int_{0}^{0.9}$$e^{-t^{2}}$dt=0.79691