To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free)
Top

Parallelogram Calculator
Top

Parallelogram calculator used to determine the area, perimeter and diagonal lengths of a parallelogram. It is an online mathematical tool for the easy calculation. The equation for the area, perimeter and diagonal lengths are mentioned below.

Area= bh = absinĪø

Perimeter = 2a+2b

Short diagonal = $\sqrt{a^{2}+b^{2}-2abcos(\theta)}$

Long diagonal = $\sqrt{a^{2}+b^{2}-2abcos(\pi -\theta )}$

Where a and b are base lengths
           h is the altitude
           $\theta$ is the angle
 

Steps for Parallelogram Calculator

Back to Top
Step 1 :  

Identify the given parameters from the question.



Step 2 :  

Area of a parallelogram is given as,


Area=absinθ



Step 3 :  

Perimeter of a parallelogram is find out using the equation.


Perimeter=2a+2b



Step 4 :  

Diagonal lengths are given by,


Short diagonal=$\sqrt{a^{2}+b^{2}-2abcos(\theta)}$



Long diagonal=$\sqrt{a^{2}+b^{2}-2abcos(\pi -\theta )}$



Problems on Parallelogram Calculator

Back to Top
  1. Determine the area, perimeter and diagonal lengths of a parallelogram whose a=3, b=4, h=8 and θ=$\pi$ rad?


    Step 1 :  

    Given values are,


    a=3, b=4, h=8 and θ=$\pi$ rad=180°



    Step 2 :  

    Area=absinθ


    Area=3×4×sin(180)


    Area=-9.6138



    Step 3 :  

    Perimeter=2a+2b


    Perimeter=2×3+2×4=14



    Step 4 :  

    Short diagonal=$\sqrt{a^{2}+b^{2}-2abcos(\theta)}$


    Short diagonal=$\sqrt{3^{2}+4^{2}-2×3×4cos(180)}$=6.2739


    Long diagonal=$\sqrt{a^{2}+b^{2}-2abcos(\pi -\theta )}$


    Long diagonal=$\sqrt{3^{2}+4^{2}-2×3×4cos(0)}$=1



    Answer  :  

    Area=-9.6138

    Perimeter=14

    Short diagonal=6.2739

    Long diagonal=1



  2. Find out the area, perimeter and diagonal lengths of a parallelogram whose a=5, b=8, h=10 and θ=$\pi$ rad?


    Step 1 :  

    Given values are,


    a=5, b=8, h=10 and θ=$\pi$ rad=180°



    Step 2 :  

    Area=absinθ


    Area=5×8×sin(180)


    Area=-32.0461



    Step 3 :  

    Perimeter=2a+2b


    Perimeter=2×5+2×8=26



    Step 4 :  

    Short diagonal=$\sqrt{a^{2}+b^{2}-2abcos(\theta)}$


    Short diagonal=$\sqrt{5^{2}+8^{2}-2×5×8cos(180)}$=11.6994


    Long diagonal=$\sqrt{a^{2}+b^{2}-2abcos(\pi -\theta )}$


    Long diagonal=$\sqrt{5^{2}+8^{2}-2×5×8cos(0)}$=3



    Answer  :  

    Area=-32.0461

    Perimeter=26

    Short diagonal=11.6994

    Long diagonal=3



*AP and SAT are registered trademarks of the College Board.