To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free)
Top

Root Mean Square Calculator
Top
This calculator helps to determine the root mean square of the given observations. It is an online statistical calculator used for easy calculation. The equation for root mean square is mentioned below:

$X_{rms}$=$\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+....+x_{n}^{2}}{n}}$

Where $X_{rms}$ is the root mean square
           x1,x2,..... are the given observations
           n is the total number of observations
 

Steps for Root Mean Square Calculator

Back to Top
Step 1 :  

Note down the given data from the question.



Step 2 :  

Using the below mentioned equation, find out the root mean square value.


$X_{rms}$=$\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+....+x_{n}^{2}}{n}}$



Problem on Root Mean Square Calculator

Back to Top
  1. Find out the root mean square value of the given data

    3,4,7,6?


    Step 1 :  

    The observation is,


    3,4,7,6



    Step 2 :  

    Root mean square equation is,


    $X_{rms}$=$\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+....+x_{n}^{2}}{n}}$


    $X_{rms}$=$\sqrt{\frac{3^{2}+4^{2}+7^{2}+6^{2}}{4}}$


    $X_{rms}$=$\sqrt{\frac{9+16+49+36}{4}}$


    $X_{rms}$=$\sqrt{\frac{108}{4}}$=27



    Answer  :  

    Root mean square, $X_{rms}$=27



  2. Determine the root mean square value of 12,15,17.


    Step 1 :  

    The given observations are,


    12,15,17



    Step 2 :  

    $X_{rms}$=$\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+....+x_{n}^{2}}{n}}$


    $X_{rms}$=$\sqrt{\frac{12^{2}+15^{2}+17^{2}}{3}}$


    $X_{rms}$=$\sqrt{\frac{144+225+289}{3}}$


    $X_{rms}$=$\sqrt{\frac{658}{3}}$=219.3333



    Answer  :  

    The answer is,

     

    $X_{rms}$=219.3333



*AP and SAT are registered trademarks of the College Board.