To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free)
Top

Signal to Noise Ratio Calculator
Top
Signal to noise calculator is an online statistical calculator used to find out the ratio between the signal and noise. It is easy to calculate if we provide the mean and standard deviation of any observation. The equation for the particular calculation is given below.

SNR=$\frac{p_{signal}}{p_{noise}}$=$\frac{\mu }{\sigma }$

Where SNR is the signal to noise ratio
          $p_{signal}$ is the signal power
          $p_{noise}$ is the background noise
          $\mu$ is the mean
          $\sigma$ is the standard deviation
 

Steps for Signal to Noise Ratio Calculator

Back to Top
Step 1 :  

Note down the given observations.



Step 2 :  

Find out the mean of the data using the following equation.


$\mu$ =$\frac{x_{1}+x_{2}+.......+x_{n}}{n}$



Step 3 :  

Calculate the standard deviation using the formula,


S=$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-\mu )^{2}}$



Step 4 :  

Signal to noise ratio is given by,


SNR=$\frac{\mu }{\sigma }$



Problems on Signal to Noise Ratio Calculator

Back to Top
  1. Determine the signal to noise ratio of the following observations.

    3,5,7,9


    Step 1 :  

    The given observations are,


    3,5,7,9



    Step 2 :  

    Mean $\mu$ is given by,


    $\mu$ =$\frac{x_{1}+x_{2}+.......+x_{n}}{n}$


    $\mu$ =$\frac{3+5+7+9}{4}$


     


    $\mu$ =$\frac{24}{4}$=6



    Step 3 :  

    Standard deviation is given as,


    S=$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-\mu )^{2}}$


    $\sum_{i=1}^{n}(x_{i}-\mu )^{2}$=(3-6)2+(5-6)2+(7-6)2+(9-6)2


    $\sum_{i=1}^{n}(x_{i}-\mu )^{2}$=9+1+1+9=20


    S=$\sqrt{\frac{1}{4-1}×20}$=2.5819



    Step 4 :  

    Signal noise ration,


    SNR=$\frac{\mu }{\sigma }$


    SNR= $\frac{6}{2.5819}$ = 2.3237



    Answer  :  

    SNR=2.3237



  2. Calculate the signal to noise ratio if the data is given as 10,20,30?


    Step 1 :  

    The given observations are,


    10,20,30



    Step 2 :  

    Mean $\mu$ is given by,


    $\mu$ =$\frac{x_{1}+x_{2}+.......+x_{n}}{n}$


    $\mu$ =$\frac{10+20+30}{3}$


     


    $\mu$ =$\frac{60}{3}$=20



    Step 3 :  

    Sample standard deviation is


    S=$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-\mu )^{2}}$


    $\sum_{i=1}^{n}(x_{i}-\mu )^{2}$=(10-20)2+(20-20)2+(30-20)2


    $\sum_{i=1}^{n}(x_{i}-\mu )^{2}$=100+100=200


    S=$\sqrt{\frac{1}{3-1}×200}$=10



    Step 4 :  

    SNR=$\frac{\mu }{\sigma }$


    SNR=$\frac{20}{10}$=2



    Answer  :  

    SNR=2



*AP and SAT are registered trademarks of the College Board.