To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free)
Top

Van Der Waals Equation Calculator
Top
The van der waals equation of state attempts to account for the finite volume of individual molecules kin a non ideal gas and the attractive forces between them. This equation is valid over a wide range of pressure and temperature than is the ideal gas equation. It provides a molecular interpretation for the equation of state.

Van Der Waals Equation Calculator calculates the pressure of a gas system using ideal gas law. The constants in the van der waals equation can be evaluated utilizing the limiting conditions which are obeyed by any equation of state.
 

Steps for Van Der Waals Equation Calculator

Back to Top
Step 1 :  

Read the problem carefully and list the values given in the problem.



Step 2 :  

Apply the van der waals equation formula and substitute the values to get the corresponding values.


 $\left(P + \frac{an^{2}}{V^{2}}\right)\left(V - nb\right)$ = nRT



Step 3 :  

Justify the answer whether it is in proper units.



Problems on Van Der Waals Equation Calculator

Back to Top
  1. Calculate the pressure developed by one kmol gaseous ammonia containes in a vessel of 0.6m3 capacity at a constant temperature of 473K by using the van der waals equation given that a = 0.4233 Nm4/mol2; b = 3.73 $\times$ 10-5 m3/mol.


    Step 1 :  

    Given data


    V = 0.6 $\times$ 10-3 m3/mol


    R = 8.314


    T = 473K


    n = 1


    a = 0.4233 Nm4/mol2


    b = 3.73 $\times$ 10-5 m3/mol.



    Step 2 :  

    $\frac{8.314(413)}{[0.6 \times 10^{-3}]-[3.43 \times 10^{-5}]}$ - $\frac{0.4233}{[0.6 \times 10^{-3}]^{2}}$


    = 5813220.467 pascal
    = 58.13 bar



    Step 3 :  

    The pressure developed by one kmol gaseous ammonia containes in a vessel is denoted in pascal unit.



    Answer  :  

    The pressure developed by one kmol gaseous ammonia containes in a vessel is 5813220.467 pascal.



  2. Calculate the temperature CO2 at the pressure 100bar and volume 3.317 $\times$ 10-4 m3/mol using the van der waals equation. The van der waals constants are 0.364 N m4/mol2 and 4.267 $\times$ 10-5 m3/mol.


    Step 1 :  

    Given data


    P = 100 bar = 10000000 pascal


    V = 3.317 $\times$ 10-4 m3/mol


    R = 8.314


    a = 0.364 N m4/mol2


    b = 4.267 $\times$ 10-5



    Step 2 :  

    T = $(10000000 + \frac{0.364 \times 1^{2}}{3.317 \times 10^{-4}})\times \frac{3.317 \times 10^{-4} - 1(4.267 \times 10^{-5})}{1 \times 8.314}$


    T = 463 K



    Step 3 :  

    The temperature is given in Kelvin.



    Answer  :  

    The temperature of CO2 is 463 K.



*AP and SAT are registered trademarks of the College Board.