To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free)
Top

Binomial Probability Calculator
Top
Binomial probability calculator helps to do the binomial probability of a distribution in an easy way. It is an online statistical calculator. The mathematical representation of binomial probability is mentioned below.

f(x;n,p)=$\frac{n!}{x!(n-x)!}$$p^{x}(1-p)^{n-x}$

Where p is the probability of success
            x is the number of success
            n is the total number of trials
 

Steps for Binomial Probability Calculator

Back to Top
Step 1 :  

Identify the given quantities given in the question.



Step 2 :  

Substitute these values in the given equation and solve it.


f(x;n,p)=$\frac{n!}{x!(n-x)!}$$p^{x}(1-p)^{n-x}$



Problems on Binomial Probability Calculator

Back to Top
  1. Find out the binomial probability whose p, x and n are 0.3, 6 and 8 respectively.


    Step 1 :  

    The given parameters are,


    p=0.3, x=6 and n=8



    Step 2 :  

    The binomial probability equation is,


    f(x;n,p)=$\frac{n!}{x!(n-x)!}$$p^{x}(1-p)^{n-x}$


    f(x;n,p)=$\frac{8!}{6!(8-6)!}$$0.3^{6}(1-0.3)^{8-6}$


    f(x;n,p)=28x0.000729x0.49=0.0100



    Answer  :  

    Binomial probability, f(x;n,p)=0.0100



  2. Calculate the binomial probability whose p, x and n are 0.2, 4 and 7 respectively.


    Step 1 :  

    The given parameters are,


    p=0.2, x=4 and n=7



    Step 2 :  

    The binomial probability equation is,


    f(x;n,p)=$\frac{n!}{x!(n-x)!}$$p^{x}(1-p)^{n-x}$


    f(x;n,p)=$\frac{7!}{4!(7-4)!}$$0.2^{4}(1-0.2)^{7-4}$


    f(x;n,p)=35x0.0016x0.512=0.0286



    Answer  :  

    Binomial probability, f(x;n,p)=0.0286



*AP and SAT are registered trademarks of the College Board.