To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free) Top

Charles Law Calculator
Top
The Charles law is one of the gas law which states that:
At constant pressure , the volume of a given mass of a gas is directly proportional to its temperature on Kelvin scale or absolute scale . It may be mathematically written as :
V  $\alpha$  T   ( at constant P and n )
Let Vi be the initial volume of a gas at initial temperature Ti , at a given pressure. Let there be change in temperature hence Volume changes. Hence Vf and Tf be the final Volume and final temperature of the gas.
From the above two equations , we get
$\frac{V_{1}}{T_{1}}$ = $\frac{V_{2}}{T_{2}}$
Charles law Calculator Calculates the any of the these quantities V1, T1, V2, and Tif any of the three quantities are given.

## Steps for Charles Law Calculator

Step 1 :

Analyze the problem and substitute the given quantities

Step 2 :

Using the formula:

$\frac{V_{i}}{T_{i}}$ = $\frac{V_{f}}{T_{f}}$

Where Vi = Initial Volume

Vf = Final Volume

Ti = Initial temperature

Tf = Final temperature.

Substituting the given values in the above equation, we get the answer for desired quantity.

## Problems on Charles Law Calculator

1. ### A gas is burnt in to the flame at contant pressure, It has initial temperature of 200 C and Volume of 4L. Calculate its Volume if temperature is 360 C?

Step 1 :

Given:

Initial Volume, Vi = 4 L

Final Volume, Vf = ?

Initial temperature, Ti =  200 C = 293 K

Final temperature, Tf = 360 C = 309 K.

Step 2 :

Using the formula:

$\frac{V_{i}}{T_{i}}$ = $\frac{V_{f}}{T_{f}}$

Vf = $\frac{V_{i} T_{f}}{T_{i}}$

Vf = $\frac{4 L \times 309 K}{293 K}$

Final Volume Vf = 4.21 L

2. ### A sample of gas has initial temperature of 240 K and Initial volume of 128 mL. calculate its final temperature if final volume is 500 ml.

Step 1 :

given: Initial volume Vi = 128 mL = 0.128 L

Final volume Vf = 500 mL = 0.5 L

Initial temperature Ti = 240 K

Final temperature Tf = ?

Step 2 :

Using formula:

$\frac{V_{i}}{T_{i}}$ = $\frac{V_{f}}{T_{f}}$

Tf$\frac{V_{f} T_{i}}{V_{i}}$

Tf = $\frac{0.5 L \times 240 K}{0.128 L}$