To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free)
Top

Heron's Formula Calculator
Top
Heron's Formula Calculator is used to find the area of a triangle of its three sides.
Heron's Formula
Heron formula will help us to find the area of the triangle. To apply Heron formula, get the area of the triangle, we need the length of all the three sides of the triangle.
 

Step by Step Calculation

Back to Top
Step 1 :  

Heron's Formula:


 


Area (A) = $\sqrt{s*(s-a)*(s-b)*(s-c)}$


 


Where s = $\frac{1}{2}$ * (a + b + c)


 


s = semi perimeter


 


A = Area of triangle



Step 2 :  

Put the values in the formula and calculate it further.



Example Problems

Back to Top
  1. Find the area of a triangle whose sides are 12 cm, 14 cm and 16 cm.


    Step 1 :  

    Given: a = 12 cm


              b = 14 cm


              c = 16 cm


     


    Heron's Formula:


     


    Area (A) = $\sqrt{s*(s-a)*(s-b)*(s-c)}$


     


    Where s = $\frac{1}{2}$ * (a + b + c)



    Step 2 :  

    Put the values in the formula and calculate it further.


     


    s = $\frac{12+14+16}{2}$


     


    s = 21


     


    A = $\sqrt{21*(21-12)*(21-14)*(21-16)}$


     


    A = 81.33 cm2



    Answer  :  

    Semi Perimeter = 21 cm

     

    Area Value = 81.33 cm2



  2. Find the area of a triangle whose sides are 5 m, 7 m and 11 m.


    Step 1 :  

    Given: a = 5 m


              b = 7 m


              c = 11 m


     


    Heron's Formula:


     


    Area (A) = $\sqrt{s*(s-a)*(s-b)*(s-c)}$


     


    Where s = $\frac{1}{2}$ * (a + b + c)



    Step 2 :  

    Put the values in the formula and calculate it further.


     


    s = $\frac{5+7+11}{2}$


     


    s = 11.5


     


    A = $\sqrt{11.5*(11.5-5)*(11.5-7)*(11.5-11)}$


     


    A = 12.97 m2



    Answer  :  

    Semi Perimeter = 11.5 m

     

    Area Value = 12.97 m2



*AP and SAT are registered trademarks of the College Board.