To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free)
Top

Adding Complex Fractions Calculator
Top

Complex fractions consists of two or more fraction, first we have to simplify that and adding with the other fraction. This calculator helps to do the addition of complex fractions. The manual calculation is difficult form this adding. The steps and problems are given in the following section.
 

Steps for Adding Complex Fractions

Back to Top
Step 1 :  

Note down the given fractions from the question.


 



Step 2 :  

Change the complex fraction into simple fractions.



Step 3 :  

Add the fractions by taking LCD.



Example problems on Adding Complex Fractions

Back to Top
  1. Add:$\frac{\frac{2}{3}}{\frac{4}{5}}$ + $\frac{\frac{6}{7}}{\frac{8}{9}}$



    Step 1 :  

    The given fractions are,


    $\frac{\frac{2}{3}}{\frac{4}{5}}$ + $\frac{\frac{6}{7}}{\frac{8}{9}}$



    Step 2 :  

    The simplification is done by reciprocal multiplication. So,


    $\frac{\frac{2}{3}}{\frac{4}{5}}$=$\frac{2}{3} \times \frac{5}{4}=$\frac{10}{12}$


    $\frac{\frac{6}{7}}{\frac{8}{9}}$=$\frac{6}{7} \times \frac{9}{8}=$\frac{54}{48}$



    Step 3 :  

    LCD is 48. So,


    $\frac{10}{12}$+$\frac{54}{48}$=$\frac{10\times4+54}{48}$=$\frac{94}{48}$=$\frac{47}{24}$



    Answer  :  

    Answer is $\frac{47}{24}$.



  2. Add:  $\frac{\frac{1}{2}}{\frac{3}{4}}$+ $\frac{\frac{5}{6}}{\frac{7}{8}}$


    Step 1 :  

    The given fractions are,


    $\frac{\frac{1}{2}}{\frac{3}{4}}$+ $\frac{\frac{5}{6}}{\frac{7}{8}}$



    Step 2 :  

    The simplification is done by reciprocal multiplication. So,


    $\frac{\frac{1}{2}}{\frac{3}{4}}$=$\frac{1}{2} \times \frac{4}{3}=\frac{4}{6}$


    $\frac{\frac{5}{6}}{\frac{7}{8}}$=$\frac{5}{6} \times \frac{8}{7}=\frac{40}{42}$



    Step 3 :  

    LCD is 42. So,


    $\frac{4}{6}$+$\frac{40}{42}$=$\frac{4\times7+40}{42}$=$\frac{68}{42}$=$\frac{34}{21}$



    Answer  :  

    Answer is $\frac{34}{21}$



*AP and SAT are registered trademarks of the College Board.