Top

Rationalize the Denominator Calculator
Top
Rationalize the Denominator means eliminating the roots in the fractions. Online Rationalize the Denominator Calculator is a tool which makes calculations easy and fun. It is used to rationalize the denominator. Try our Rationalize the Denominator Calculator and get your problems solved instantly.

Below is given a default rational expression, you could see how to rationalize the denominator using  this calculator.

## Steps for Rationalize the Denominator Calculator

Step 1 :

To rationalize the denominator, first multiply both the numerator and the denominator by the conjugate of the denominator.

Step 2 :

Use distribute property (or FOIL) on both the numerator and the denominator.

Step 3 :

Combine like terms and then simply it further.

## Examples on Rationalize the Denominator Calculator

1. ### Rationalize the Denominator:4/(sqrt(6)+ sqrt(5)).

Step 1 :

(4/(sqrt(6)+ sqrt(5)))*((sqrt(6)-sqrt(5)))/((sqrt(6)-sqrt(5)))

Step 2 :

4*(sqrt(6)-sqrt(5))/(sqrt(6)+ sqrt(5))*(sqrt(6)-sqrt(5)) =>(4*sqrt(6)- 4*sqrt(5))/(sqrt(6))^2-(sqrt(5))^2 [(a+b)(a-b)=a^2-b^2] =>(4*sqrt(6)- 4*sqrt(5))/(6-5)

Step 3 :

=>(4*sqrt(6)- 4*sqrt(5))/1 => 4*(2.449)- 4*(2.236) => 9.798 - 8.944 => 0.854

0.854

2. ### Rationalize the Denominator:6/(sqrt(11)+ sqrt(13)).

Step 1 :

(6/(sqrt(11)+ sqrt(13)))*((sqrt(11)-sqrt(13)))/((sqrt(11)-sqrt(13)))

Step 2 :

6*(sqrt(11)-sqrt(13))/(sqrt(11)+ sqrt(13))*(sqrt(11)-sqrt(13)) =>(6*sqrt(11)- 6*sqrt(13))/(sqrt(11))^2-(sqrt(13))^2 [(a+b)(a-b)=a^2-b^2] =>(6*sqrt(11)- 6*sqrt(13))/(11-13)

Step 3 :

=>(6*sqrt(11)- 6*sqrt(13))/-2 => 6*(3.317)- 6*(3.606)/(-2) => -(1.734)/(-2) => 0.867