 Top

F Test Calculator
Top
F-value is the ratio of two variances used to test the significance of some item of interest. Online F Test Calculator is a tool which makes calculations easy and fun. Try our F Test Calculator and get your problems solved instantly.

## Steps for F-Test Calculator

Step 1 :

Calculate the average(mean) of the given two set of data by adding up all the numbers, then divide by total number of numbers present in set.

Step 2 :

Subtract the average(mean) value from the actual value for each period, which gives us the deviation for both periods.

Step 3 :

Square each period's deviation to avoid the negative numbers.

Step 4 :

Sum the squared deviations to get a single number, then divide the sum of the squared deviations by the quantity of periods. This gives the variance.

Step 5 :

Apply the formula: F-Value = $\frac{(variance_{1})^{2}}{(variance_{2})^{2}}$

where, variance1 is the variance for first set of numbers and variance2 is the variance for second set of numbers.

## Examples on F-Test Calculator

1. ### Find the f-value for set1 = {2, 3, 4, 7} and set2 = {4, 5, 6, 9}?

Step 1 :

Mean for first set = $\frac{2 + 3 + 4 + 7}{4}$ => $\frac{16}{4}$ = 4
Mean for second set = $\frac{4 + 5 + 6 + 9}{4}$ => $\frac{24}{4}$ = 6

Step 2 :

Set1 = (2 - 4), (3 - 4), (4 - 4), (7 - 4) => -2, -1, 0, 3
Set2 = (4 - 6), (5 - 6), (6 - 6), (9 - 6) => -2, -1, 0, 3

Step 3 :

Set1 = (-2)2, (-1)2, 0, (3)2 => 4, 1, 0, 9
Set2 = (-2)2, (-1)2, 0, (3)2 => 4, 1, 0, 9

Step 4 :

Variance1 = $\frac{4 + 1 + 0 + 9}{4}$ => $\frac{14}{4}$ => 3.5
Variance2 = $\frac{4 + 1 + 0 + 9}{4}$ => $\frac{14}{4}$ => 3.5

Step 5 :

F-Value = $\frac{3.5}{3.5}$ = 1

1

2. ### Find the f-value for set1 = {3, 4, 5, 8} and set2 = {5, 6, 7, 10}?

Step 1 :

Mean for first set = $\frac{3 + 4 + 5 + 8}{4}$ => $\frac{20}{4}$ = 5
Mean for second set = $\frac{5 + 6 + 7 + 10}{4}$ => $\frac{28}{4}$ = 7

Step 2 :

Set1 = (3 - 5), (4 - 5), (5 - 5), (8 - 5) => -2, -1, 0, 3
Set2 = (5 - 7), (6 - 7), (7 - 7), (10 - 7) => -2, -1, 0, 3

Step 3 :

Set1 = (-2)2, (-1)2, 0, (3)2 => 4, 1, 0, 9
Set2 = (-2)2, (-1)2, 0, (3)2 => 4, 1, 0, 9

Step 4 :

Variance1 = $\frac{4 + 1 + 0 + 9}{4}$ => $\frac{14}{4}$ => 3.5
Variance2 = $\frac{4 + 1 + 0 + 9}{4}$ => $\frac{14}{4}$ => 3.5

Step 5 :

F-Value = $\frac{3.5}{3.5}$ = 1