Partial Derivative Calculator

Top
**Step 1 :**

**Step 2 :**

If f(x,y) is a function, then the differentiation of f with respect to x keeping y as constant is called as partial derivative of f with respect to x which is denoted by $\frac{\partial f}{\partial x}$ or $f_{x}$. Similarly the differentiation of f with respect to y keeping x as constant is called as partial derivative of f with respect to y which is denoted by $\frac{\partial f}{\partial y}$ or $f_{y}$. Online Partial Derivative Calculator (known as partial differentiation calculator) is a tool which makes calculations easy and fun. It is used to calculate the partial differentiation of a function with two variables. It even intake multivariables hence also known as multivariable derivative calculator or partial differential equation solver online that is a funfull tool in math. You have to enter the function and variable value to get answer instantly.

Below is given a default function with two variables. Click on "Submit", it will calculate partial derivative of function with respect to x keeping y as constant and vice verse.

Below is given a default function with two variables. Click on "Submit", it will calculate partial derivative of function with respect to x keeping y as constant and vice verse.

Observe the given function with two variables.

$\Rightarrow$ To find the partial derivative of f with respect to x which is denoted by $\frac{\partial f}{\partial x}$ or f$_{x}$, differentiate f with respect to x keeping y as constant.

$\Rightarrow$ To find the partial derivative of f with respect to y which is denoted by $\frac{\partial f}{\partial y}$ or f$_{y}$, differentiate f with respect to y keeping x as constant.

If f(x, y) = xy + x

^{3}then calculate $\frac{\partial f}{\partial x}$ ?**Step 1 :**Given function: f(x, y) = xy + x

^{3}**Step 2 :**$\frac{\partial f}{\partial x}$ = $\frac{\mathrm{d} }{\mathrm{d} x}$ (x

^{3}) + y $\frac{\mathrm{d} (x)}4{\mathrm{d} x}$

=> 3x

^{2}+ y**Answer :**3x

^{2}+ yIf f(x, y) = y

^{2}x^{3}then calculate $\frac{\partial f}{\partial y}$ ?**Step 1 :**Given function: f(x, y) = y

^{2}x^{3}**Step 2 :**$\frac{\partial f}{\partial y}$ = x

^{3 }$\frac{\mathrm{d} (y)^{2}}{\mathrm{d} y}$

=> x

^{3}2y**Answer :**2x

^{3}y