To get the best deal on Tutoring, call 1-855-666-7440 (Toll Free) Top

Van Der Waals Equation Calculator
Top
The van der waals equation of state attempts to account for the finite volume of individual molecules kin a non ideal gas and the attractive forces between them. This equation is valid over a wide range of pressure and temperature than is the ideal gas equation. It provides a molecular interpretation for the equation of state.

Van Der Waals Equation Calculator calculates the pressure of a gas system using ideal gas law. The constants in the van der waals equation can be evaluated utilizing the limiting conditions which are obeyed by any equation of state.

## Steps for Van Der Waals Equation Calculator

Step 1 :

Read the problem carefully and list the values given in the problem.

Step 2 :

Apply the van der waals equation formula and substitute the values to get the corresponding values.

$\left(P + \frac{an^{2}}{V^{2}}\right)\left(V - nb\right)$ = nRT

Step 3 :

Justify the answer whether it is in proper units.

## Problems on Van Der Waals Equation Calculator

1. ### Calculate the pressure developed by one kmol gaseous ammonia containes in a vessel of 0.6m3 capacity at a constant temperature of 473K by using the van der waals equation given that a = 0.4233 Nm4/mol2; b = 3.73 $\times$ 10-5 m3/mol.

Step 1 :

Given data

V = 0.6 $\times$ 10-3 m3/mol

R = 8.314

T = 473K

n = 1

a = 0.4233 Nm4/mol2

b = 3.73 $\times$ 10-5 m3/mol.

Step 2 :

$\frac{8.314(413)}{[0.6 \times 10^{-3}]-[3.43 \times 10^{-5}]}$ - $\frac{0.4233}{[0.6 \times 10^{-3}]^{2}}$

= 5813220.467 pascal
= 58.13 bar

Step 3 :

The pressure developed by one kmol gaseous ammonia containes in a vessel is denoted in pascal unit.

The pressure developed by one kmol gaseous ammonia containes in a vessel is 5813220.467 pascal.

2. ### Calculate the temperature CO2 at the pressure 100bar and volume 3.317 $\times$ 10-4 m3/mol using the van der waals equation. The van der waals constants are 0.364 N m4/mol2 and 4.267 $\times$ 10-5 m3/mol.

Step 1 :

Given data

P = 100 bar = 10000000 pascal

V = 3.317 $\times$ 10-4 m3/mol

R = 8.314

a = 0.364 N m4/mol2

b = 4.267 $\times$ 10-5

Step 2 :

T = $(10000000 + \frac{0.364 \times 1^{2}}{3.317 \times 10^{-4}})\times \frac{3.317 \times 10^{-4} - 1(4.267 \times 10^{-5})}{1 \times 8.314}$

T = 463 K

Step 3 :

The temperature is given in Kelvin.